Andô–Douglas type characterization of optional projections and predictable projections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optional and predictable projections of normal integrands and convex-valued processes

This article studies optional and predictable projections of integrands and convex-valued stochastic processes. The existence and uniqueness are shown under general conditions that are analogous to those for conditional expectations of integrands and random sets. In the convex case, duality correspondences between the projections and projections of epigraphs are given. Consistently with the gen...

متن کامل

Ideal Projections and forcing Projections

It is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman-Magidor-Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove: (1) If I is a normal ideal on ω2 which satisfies stationary antichain catching, then there is an inner model with a Woodin cardinal; (2) For any n ∈ ω, it is consistent...

متن کامل

A note on lifting projections

Suppose $pi:mathcal{A}rightarrow mathcal{B}$ is a surjective unital $ast$-homomorphism between C*-algebras $mathcal{A}$ and $mathcal{B}$, and $0leq aleq1$ with $ain  mathcal{A}$. We give a sufficient condition that ensures there is a proection $pin mathcal{A}$ such that $pi left( pright) =pi left( aright) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real...

متن کامل

Type Theory and Projections for Static

A system of annotated types is proposed as a means of describing and inferring static information, such as strictness and constancy, about functional programs. An abstract semantics is given in terms of projections. A close connection between annotated type assignment and projection analysis is demonstrated.

متن کامل

RANDOM PROJECTIONS Margin-constrained Random Projections And Very Sparse Random Projections

Abstract We1 propose methods for improving both the accuracy and efficiency of random projections, the popular dimension reduction technique in machine learning and data mining, particularly useful for estimating pairwise distances. Let A ∈ Rn×D be our n points in D dimensions. This method multiplies A by a random matrix R ∈ RD×k, reducing the D dimensions down to just k . R typically consists ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2015

ISSN: 0019-3577

DOI: 10.1016/j.indag.2015.01.001